
 

 

 

 

Abstract—Measurement of the proliferative behaviors of in 

vitro cells is important to many biomedical applications ranging 

from basic biological research to advanced applications, such as 

drug synthesis, stem cell manufacturing, and tissue engineering. 

The detection of borders within an image constitutes a process 

of digitalization of the image. Once the digitized image is 

obtained, the next step is the application of a specific process 

consisting in applying algorithms that allow the obtaining of 

raw data of the image. In this case, the applied algorithm to the 

digitized images was the Canny algorithm. This work presents a 

system to compute a vector representation for a selected cell of 

an image. The representation is in bi-level raster image. 

 
Index Terms—Bi-level, cell tracking, raster image. 

 

I. INTRODUCTION 

The basic study of human form and function has 

underpinned the establishment of modern medicine, and is 

well recognized as having evolved in large part from the 

original detailed topographic drawings of human anatomy by 

Leonardo da Vinci, who firmly believed in the power of 

imaging and visualization as a critical tool for providing key 

insights into nature and human health.  A more recent 

iteration of that same fundamental concept is evidenced by 

the National Library of Medicine‟s „The Visible Human 

Project®', in which the combination of a number of powerful 

clinical imaging techniques with modern computing methods 

resulted in complete atlases of the human body at 

unprecedented resolution. 

Computational image analysis tools for semi-automated 

and automated tracking of single cells or cell clusters within 

live biological systems have been developed and reported 

since early 1980s. In order to produce quantitative and 

statistically relevant results, large amounts of data are 

required (say, several sequences, each containing several 

hundredth of images), and automatic image analysis 

algorithms become necessary. One frequent aim is to extract 
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from the image sequence the complete description of cell 

positions, shape, and motion across time, leading, in the case 

of dividing cells, to a space-time lineage. These segmentation 

and dividing/tracking issues have to be solved in the most 

reliable manner, since human post-processing is the limiting 

factor of the rate of processed data. 

Currently the most important imaging tool for studying 

dynamic processes in living cells is still light microscopy. 

Biological research is impossible to imagine without a 

microscope. Latest generations of microscopes, able to 

produce huge arrays of multidimensional data, only distantly 

resemble Leeuwenhoek‟s first microscope. Every advance in 

visualization techniques and hardware brings us one step 

closer to understanding life, e.g., how genome information 

gives identity to cells, how cells constitute organisms and 

how errant cells cause disease. The use of light microscopes 

for biological experimentation and investigation goes back to 

Antoni van Leeuwenhoek (1632–1723), who discovered the 

motion of bacteria, sperm cells, blood cells and more, using a 

simple magnifying lens. It is only since relatively recently, 

however, that light microscopy became mature enough to 

allow in vivo imaging of molecular complexes and even 

single molecules. Apart from substantial improvements in 

optics hardware and the development of increasingly 

sensitive electronic imaging sensors, a key factor was the 

discovery, cloning, and expression of the jellyfish green 

fluorescent protein (GFP).  

This enabled visible fluorescence to be encoded into a 

specific gene of interest, which, in turn, enables one to tag 

and optically detect virtually any protein of interest in living 

cells. In recent years, many GFP variants have been 

developed with different spectral properties, enabling 

simultaneous detection of differently labeled proteins and 

studying their interaction. Since the first images of cultured 

mammalian cells recorded to film using an microscope were 

published in the United States in 1945, the ultrastructural 

analysis of mammalian cells/tissue has relied almost entirely 

on extrapolating the three-dimensionality of the 

structures/compartments under investigation from sets of 

two-dimensional (2D) images.     

A few examples of biological molecular dynamic 

processes and images acquired for studies into these 

phenomena may help one to appreciate the challenges of 

tracking. One of the intracellular structures being 

investigated intensively in biology is the cytoskeleton, which 

consists of several subsystems of densely interwoven and 

highly plastic networks of filamentous polymers. One 

category of cytoskeleton polymers is constituted by the 

microtubules. These are required for a variety of cellular 

functions and their dynamic behavior is regulated by many 

factors. 
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Understanding physiological processes in health and 

disease and developing adequate drugs requires the imaging 

and analysis of the (morpho) dynamic behavior of single cells 

or cell clusters in tissues under normal and perturbed 

conditions. This typically involves the tracking and 

quantification of large numbers of cells in time-lapse 

fluorescence, phase-contrast, or intravital microscopy data 

sets consisting of hundreds to many thousands of image 

frames, making manual analysis no option, especially in 3D. 

The automation of these tasks faces several challenges, 

including the generally poor image quality (low contrast and 

high noise levels), the varying density of cell populations due 

to division, cells entering or leaving the field of view, and the 

possibility of cells touching each other without showing 

sufficient image contrast. Many computerized methods for 

cell tracking have already been proposed, and some of these 

have found their way to commercial and open-source 

software tools, but the consensus arising from the literature 

seems to be that any specific tracking task requires dedicated 

(combinations of) algorithms to obtain optimal results. 

Nevertheless, several trends can be observed in the 

development of new cell tracking methods, suggesting the 

superiority of particular algorithms. 

The study of cell movement is fundamental to research in 

embryological development, wound healing, immune 

defense, tumor cell invasion, and metastasis [1]. Cell 

migration is conventionally monitored by using time-lapse 

microscopy in combination with different 2-D or 3-D tissue 

substrata. For the detection of changes in cell shape and/or 

relative position with time from serial images a precise and 

robust segmentation procedure is required to discriminate 

between the cell boundary and the surrounding tissue. 

Since the apparition of the first proposals of computational 

image analysis tools for semi-automated and automated 

tracking of single cells or cell clusters within live biological 

systems in the early 1980s, a growing interest on cell 

dynamics has arisen due to the possibility of studying several 

aspects of the cellular processes, such as stem/parent 

identification for lineage determination and their behavior in 

the face of alternative cell fates, cell aging, response to 

different culture conditions, characterization of proliferation, 

social interactions during biological processes such as wound 

healing, and the obtainment of precise information about cell 

behavior during general biological processes such as 

migration, mitosis, apoptosis, shape deformation of 

individual cells, and their interactions among cells [1-3].  

In order to produce quantitative and statistically relevant 

information, large amounts of data are required (i.e. several 

sequences, each one containing several hundreds of images), 

and automatic image analysis algorithms become necessary. 

Typical experiments produce over 100 gigabytes (GB) of 

image data consisting of about 40,000 frames, representing 

thousands of cells in each frame. This makes automated 

tracking and cell analysis critical to efficiently study the 

underlying biological mechanisms. However, the high 

processing demand, the varying density of the cell culture (i.e. 

cells dividing/dying, leaving/re-entering the field-of-view), 

and the complexity of the cellular topologies (i.e. shape 

deformation, close contact, and partial overlap) impose many 

challenges to the existing tracking techniques.  

There are numerous studies reported in the literature in 

which vast amounts of image data are generated and where 

the dynamics of hundreds or thousands of particles need to be 

quantitatively analyzed in order to reveal detailed 

information related to the functional behavior thus allowing 

detect rare events suggestive of functional heterogeneity. 

This may lead to the formulation of comprehensive models of 

molecular processes. It is evident that manual tracking is an 

intensive labor which usually results in costly, inaccurate, 

and poorly reproducible extracted information, furthermore, 

due to manual processing is time consuming only a small 

fraction of the data can be analyzed in this manner. This calls 

for renewed efforts in developing computational image 

analysis tools. 

Several approaches using a variety of techniques have 

been previously reported. In general, the proposed tracking 

methods agree with the rough classification found in [4], in 

which it is settled that there are two general ways to perform 

cell tracking: the first one finds the object contour in the 

current frame given an initial contour from the previous 

frame; the second one segments the cell regions in two or 

more frames simultaneously and then resolves the association 

functions between the regions of interest.  

Despite very good results can be found in the literature in 

terms of geometrical and topological treatments, both 

tracking techniques still present some problems when they 

deal with dividing cells, cells entering/leaving the field of 

view, cells merging into a cluster, and cells touching or 

overlapping [4-9]. In this regard, several efforts have been 

proposed to handle the problems mentioned above, among 

which are parent/stem association by using the local 

association method [10], adaptive thresholding method [11], 

data association by using the graph theoretic minimum cost 

flow framework considering various realistic cell behaviors 

(i.e. migration, mitosis, overlap, entering and leaving) [12], 

incorporation of a Markov random field prior distribution 

into the particle filter framework [13,14], split/merged 

measurements assuming that the number of objects is fixed 

[15], and contour tracking based on partial contour matching 

[2].  

In this work, we will focus on the extraction and 

vectorization of individual lines that may have arbitrary 

width, rough contours, crossings, and branches.  

The proposed algorithm can be classified as a model-based 

contour evolution since it performs the cell tracking by 

successively filtering the image in such way that the 

information obtained from the contour detection from a 

previous frame is used to detect the contour in the current 

frame but taking certain positions of specific pixels as 

reference for the following processing. The Canny algorithm 

was used as filter for the contour detection. By storing the 

coordinates of the positions of interest and using the 

information obtained from the contour detection, it is 

possible to predict the cell trajectory based on the analysis of 

a few frames. 

 

II. METHODOLOGY 

The contour detection algorithm used in our method is 

based on that described in [9].This algorithm allows 

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 2, No. 4, July 2012

255



 

 

 

detecting the entire outline of an arbitrary 8-shaped object in 

the counter clockwise direction. The outline will be an 

8-connected set of foreground pixels, each of them having 

one or more neighbors belonging to the background. The 

general scheme of the method proposed in this work is 

depicted in Fig. 1. 

 

Fig. 1. General scheme of the proposed canny-based algorithm for cell 

tracking. 

Given an initial starting pixel Si, the next outline pixel and 

next starting pixel are chosen as follows: search the 

neighbors in the counter clockwise direction, starting with Si, 

until a transition from background to foreground is found. 

The first foreground pixel thus found will be the next outline 

pixel and the last background pixel will be the next initial 

pixel, respectively. This process will continue with every 

transition found. 

The general scheme of the computational approach 

proposed by Canny is shown in Fig. 2. The Canny algorithm 

can be summarized in five main stages: smoothing, finding 

the intensity gradients, non-maximum suppression, double 

thresholding, and edge tracking [16].  

 

 

Raw unprocessed image data are always susceptible to 

present intrinsic noise due to the mechanism through which 

the image was constructed/taken (i.e. camera, X-ray, 

microscopy). The smoothing stage has the purpose of 

removing noise from the original image in order to prevent 

the detection of mistaken edges in further stages and then 

reduce the probability of constructing false contours for 

tracking. Smoothing is performed by convolving the image 

with a two-dimensional Gaussian filter, which is typically 

symmetric and centered at the central pixel of the mask thus 

provoking that the resulting image, depends only on the 

standard deviation σ. The resulting image is a slightly blurred 

version of the original which due to the noise compression, 

which is not significantly affected by a single noisy pixel.  

In the next stage, finding the intensity gradients allows 

finding the edges in the image. Since an edge can be oriented 

in a variety of directions, Canny algorithm performs edge 

detection by applying four filters in order to detect horizontal, 

vertical, and diagonal edges. Canny algorithm approximates 

the intensity gradients in the image by using first-order 

filtering masks, such as Sobel or Roberts kernels. The effect 

of increasing σ in the noise-removal stage is the gradients are 

much smoother, which means that σ determines the sharpness 

of the detected edges in the current stage. Once the edges 

have been detected, the next stage consists on sharpening 

them. The main purpose of this step is to convert the rough 

(blurred) edges resulting from the image of the gradient 

magnitudes to fine (sharp) edges. This step distinguishes the 

Canny algorithm from other algorithms since it takes into 

account the neighbors of each edge along the direction of the 

local gradient. This step is performed by preserving all local 

maxima in the gradient image and deleting everything else. 

Furthermore, the gray-intensity value assigned to the sharp 

edges is directly related to the strength of the original edges 

along the gradient direction. 

Despite it is highly probable than the sharp edges 

remaining in the image after the non-maximum suppression 

are the true edges of the images, the gray-intensity values of 

these edges are accented by the pixel-by-pixel strength thus 

causing that some edges may be formed by underlying noise 

or color variations (typical for rough surfaces). In order to 

discriminate between true/false edges, a threshold is used as 

indicator of the permanency of the edges. The Canny 

algorithm uses a double thresholding (i.e. high and low 

thresholds) which leads to a classification of the edges with 

three possible scenarios: strong edges, weak edges, and 

suppressed edges.  

In this regard, edge pixels with intensity values greater 

than the high threshold are marked as strong; edge pixels 

with intensity values less than the high threshold but greater 

than the low threshold are marked as weak; and finally, edge 

pixels with intensity values less than the low threshold are 

suppressed and are not considered for the resulting image. 

Finally, the last stage of the Canny algorithm determines 

which edges will appear in the output image by a simple 

criterion: strong edges are immediately included while weak 

edges are included only if they are connected to a strong edge, 

otherwise, they are ignored. Once this stage is complete, a 

binary image containing the edges of the input image is 

obtained as the output image of the Canny algorithm. 

Despite it is possible that high noise or large color 

variations result in a strong edge, this condition is almost 

never achieved. By selecting adequate values for the standard 

deviation and both thresholds, noise and color variations will 

only result in weak edges. Furthermore, color variations 

usually generate weak edges uniformly distributed on the 

entire image independently of the true edges [16]. The 

previous fact results in a low probability to find weak edges 

connected to strong edges thus allowing that the edges 

include in the output image are only due to the true edges of 

the input image. 

 

III. TEST AND RESULTS 

Since the appearance and behavior of cells can be quite 

different from particles, the image processing techniques 

developed to track them are usually also quite different. In 
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Fig. 2. General diagram of the canny algorithm.



 

 

 

either case, there are generally two sides to the tracking 

problem: 1) the recognition of relevant objects and their 

separation from the background in every frame (the 

segmentation step), and 2) the association of segmented 

objects from frame to frame and making connections (the 

linking step). 

Fig. 3 depicts the original image, which consists of a set of 

cells. The pictures were provided by [9].  

 

The read image is converted to a gray-scale image in order 

to apply the edge detection over one single dimension. As 

mentioned, Canny filter is used as base of the image filtering 

due to its capability of being adjusted for reducing noise in 

the resulting image.  

Cell tracking methods generally consist of two main image 

processing steps: 1) cell segmentation (the spatial aspect of 

tracking), and 2) cell association (the temporal aspect). 

Segmentation process consists on dividing an image into 

(biologically) meaningful parts (segments), resulting in a 

new image containing for each pixel a label indicating to 

which segment it belongs. It basically serves to the 

discrimination between “foreground” versus “background”. 

Fig. 4 shows the filtered image after applying the Canny 

filter. The main objective is to sample the gray level at 

various places near the cells in the picture and estimate the 

local gray-level thresholds that can be used to define seeds 

(low threshold) and extra-cell space (high threshold). 

 

Once a first contour detection has been performed, the next 

step consists on tracking the neighboring selected pixel in the 

counter clockwise direction, this way the pixel that matches 

the intensity value of the pixel edge will be stored as part of 

the outline shape. Then the last pixel identified as part of the 

contour will be taken as pivot for the next filtering and the 

searching process repeats using the next neighboring pixel 

until the full contour has been detected. 

Now that we have an over- and under-segmentation, we 

can generate all potential cells that are consistent with these 

bounds – in other words, all the unions of blobs on “linear 

subgraphs” of the connection graph described in the previous 

section. Once the cells are properly segmented in all frames 

of a time-lapse image sequence, and the correct associations 

have been established between successive frames, it is 

relatively easy to compute (morpho) dynamic features that 

may reveal biologically relevant phenomena. For example, 

variabilities in cell shape (within populations or per cell) over 

time can be very effectively studied using statistical tools 

such as principal component analysis of the cell outlines. 

In images where the cells have sufficiently and 

consistently different intensities than their surroundings, they 

are most easily segmented by thresholding, which labels 

pixels above the intensity threshold as “object” and the 

remainder as “background”, after which disconnected 

regions can be automatically labeled as different cells. In the 

case of severe noise, auto fluorescence, photo bleaching (in 

fluorescence microscopy), poor contrast, gradients, or halo 

artifacts (in phase-contrast or differential interference 

contrast microscopy), thresholding will fail, and more 

sophisticated segmentation approaches are needed. 

The simplest approach to solving the subsequent 

association problem is to link every segmented cell in any 

given frame to the nearest cell in the next frame, where 

“nearest” may refer to spatial distance but also to difference 

in intensity, volume, orientation, and other features. This 

nearest-neighbor solution works well as long as the cells are 

well separated in at least one of the dimensions of the feature 

space. Essentially, this criterion also applies to so-called 

online cell tracking approaches, which alternate between 

segmentation and linking on a per-frame basis. For instance, 

template matching, mean-shift processing, or deformable 

model fitting is applied to one frame, and the found positions 

or contours are used to initialize the segmentation process in 

the next frame, and so on, which implicitly solves the linking 

problem (see Fig. 5). 

Fig. 5 shows the filtered image with the edges marked. 

This is achieved by selecting the cell of interest. However, 

the basic concepts underlying the vast majority of published 

methods are virtually the same. The commonly used 

approach in motion tracking consists of at least the following 

steps: preprocessing the image data, detecting individual 

particles every time step, linking particles detected at 

successive time points, and analyzing the results. 

 

Assuming the image as a 2D space, the coordinates of the 

pixels belonging to the contour will be stored as ordered pairs. 

By storing the coordinates of the positions of interest and 

using the information obtained from the contour detection, 

such as relevant issues about geometry and topology, it is 

possible to build a probabilistic model that allows predicting 

the cell trajectory based on the analysis of only a few frames. 

The proposal of building a mathematical model that describes 
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Fig. 3.  Original image.

Fig. 4.  Filtered image, is using a filter canny.

Fig. 5. Filtered image with edges marked.



 

 

 

the motion of the cells in the image not only helps to decrease 

the computational costs but offers an alternative to face the 

problem of overlapping and/or touching cells, 

entering/leaving cells, dividing cells, and cells merging into a 

cluster. 

 

IV. CONCLUSION 

The breadth of medicine that stands to benefit from 

improved knowledge of cell-based therapies is vast. In vivo 

cell tracking offers insight into the underlying biological 

processes of new cell-based therapies, with the aim to depict 

cell function, migration, homing and engraftment at organ, 

tissue, cellular and molecular levels. Molecular imaging has 

expanded the possibilities through different imaging 

modalities and contrast agents of which this article will focus 

upon optical imaging. 

Until recently, it is possible to manually identify incidents 

of mitosis because mitotic cells tend to retract, round up, and 

exhibit intensified surrounding halos under phase contrast 

illumination for short-period, small-scale studies. The 

proposed method does not depend on empirical parameters or 

ad hoc image pre-processing, which makes it suitable, robust, 

and straightforward for adapting to different types of cells. 

Since it is also a simple algorithm, based on repetitive 

contour detection taking specific positions from the contour 

identification of previous frames, it allows cell tracking with 

relatively low computational costs. Furthermore, the 

proposed algorithm can be easily incorporated to a more 

complex system in which a mathematical model can be build 

to describe the motion of the cells in the image by analyzing 

only a few frames thus providing an alternative to face 

overlapping and/or touching cells, entering/leaving cells, 

dividing cells, and cells merging into a cluster since the 

trajectory of the cells can be approximated and then cells can 

be discriminated and differently treated for these special 

cases. 

 

V. FUTURE WORK 

There is now a clear desire/need within the international 

biology community, the presence of diseases such as diabetes 

and cancer, open up important research lines for biomedical 

research communities to understand the 'bigger picture' with 

respect to the cell as complex systems, and using a precise 

spatial framework as a „foundation‟ is considered by many in 

systems biology as a fundamental prerequisite to developing 

a genuine capacity to accurately model changes in the 

spatio-temporal coordinates of complex cellular events in 

silico and ultimately, for predicting the pathophysiology of 

chronic diseases like diabetes and cancer in the future.  

By combining new mathematical and computational tools 

for precisely extracting useful, novel and quantitative 

insights into 2D and 3D cellular organization from these 

enormous datasets, we foresee a unique opportunity to begin 

mapping structural phenotypes for cell function versus 

dysfunction onto complete sets of 2D and 3D spatial 

coordinates for cell organization with nanometer precision. 

A future area of focus that would improve the sensitivity of 

cell tracking and possibly quantification with optical imaging 

would be the generation of molecular markers that could 

identify engrafted cells and the nature of their progeny. 
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